

MustangWiki Search Engine
CSE 2341 - Data Structures
Semester Project Overview

Scenario

¤  MustangWiki's search engine is broken!
¤  MustangWiki is a collaborative, open place

where students, faculty, staff and the
community can create online, freely-accessible
content.

¤  Please help MustangWiki get its search abilities
back by implementing a fast search engine for
all of the books in the collection.

System Architecture

Sample Document
<page>
 <title>Human Anatomy/Osteology/Axialskeleton</title>
 <ns>0</ns>
 <id>181313</id>
 <revision>
 <id>1481605</id>
 <parentid>1379871</parentid>
 <timestamp>2009-04-26T02:03:12Z</timestamp>
 <contributor>
 <username>Adrignola</username>
 <id>169232</id>
 </contributor>
 <minor />
 <comment>+Category</comment>
 <sha1>hvxozde19haz4yhwj73ez82tf2bocbz</sha1>
 <text xml:space="preserve">[[Image:Axial_skeleton_diagram.svg|thumb|240px|right|

Diagram of the axial skeleton]]

The Axial Skeleton is a division of the human skeleton and is named because it makes up
the longitudinal ''axis'' of the body. It consists of the skull, hyoid bone, vertebral
column, sternum and ribs. It is widely accepted to be made up of 80 bones, although

this number varies from individual to individual.

[[Category:{{FULLBOOKNAME}}|{{FULLCHAPTERNAME}}]]</text>
 </revision>
 </page>

Inverted File Index

¤ Data structure for maintaining terms and a list of
documents in which those terms appear.

Documents:
d1	 =	 computer	 network	 security
d2	 =	 network	 cryptography
d3	 =	 database	 security Index:

computer	 =	 d1
network	 =	 d1,	 d2
security	 =	 d1,	 d3
cryptography	 =	 d2
database	 =	 d3

Document Parser
the

running

a

formed

nicely

Remove Stop
Words

running

running

formed

nicely

Stem
run

form

nice

Query Processor
u  Will handle simple prefix Boolean queries

u  no nesting
u  Either AND or OR
u  May include NOT (all NOTs will be trailing)

u  Examples:
u  Seattle
u  Seattle NOT Boston
u  AND book food bank
u  OR Boston Seattle
u  AND Book Boston NOT Seattle

Index Handler

¤ Creation and maintenance of inverted file
index.

¤ Search and returning documents
containing a specific word (query term)

¤ May maintain other information such as
frequency of word appearance.

Inverted File Index Implementation
¤  You'll implement at least two underlying data structures to

maintain the inverted file index
¤  AVL Tree
¤  Hash Table

¤  Classes that will be used to store index should implement the
same interface.
¤  may be adapters to AVL or hash table.

¤  Index should be persistent.
¤  When program starts, user should have the option of

importing index into AVL or Hash table.

Ranking the Results
¤ Ranking will be done using Term Frequency/Inverse

Document Frequency (TF/IDF) statistic.
¤ General Idea:

¤ If a word appears in a document frequently, but
appears rarely in other documents from the same
corpus, it is important result for the query.

¤ If a word appears in a document but also appears in
many other documents, it is less important.

User Interface

¤  3 modes:
¤  maintenance mode

¤  add to the index; clear the index
¤  interactive mode

¤  user can enter a query,
¤  return ranked results
¤  allow user to choose a page to view

¤  stress test mode
¤  allow user to submit a command file.
¤  Commands are created by each group and

documented

Project Mechanics
¤ Can be done individually or in in teams of 2 or 3

students (max)
¤ Teams of 3 have to implement basic date

range queries and user/writer queries
¤ Must use OOP
¤ May use as much of c++ std lib as you'd like
¤ Code base should be properly documented and

formatted.

About the Dataset
¤ Wikibooks export file

¤ ~171,000 individual pages (<page></page>)
¤ >700 MB of raw
¤ XML format
¤ Not pretty
¤ May contain non-ascii characters

¤ Goal: Parse and index in under 2 minutes!

Suggestions
¤  This is a gigantic project

¤  May contain > 20 classes all working together

¤  You have to start NOW!
¤  Spend up-front time on design!
¤  Implement one piece at a time.

¤  Once that works and is tested, back it up.
¤  Think about versioning of software.

¤  0.1, 0.2, 0.3...
¤  Make an initial list of goals for each version and

when they should be done.

